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Abstract.

The paper,” which is the first in a series of two, presents an approach
which allows us to derive a family of homogenization approaches and assess

the accuracy of any homogenization in the relation of given input data.




1. Introduction.

~ The study of periodic media is one application of partial differential
equations that have highly oscillatory, periodic coefficients. Essentialy,
the problem is to solve tﬁ; elliptic differential equation |
1 h
(1) -y a—i—[apq(g)g%(x)] +ag (w00 = £x)
P, q=1 d

on Qc R® with prescribed boundary conditions, in which apq and a, are

0
real-valued 2mn-periodic functions and h 1is a positive number that is small
in comparison with the diameter of the domain Q.

The problem is to get the solution of (1) for relatively (to what?) small
h. There is large available mathematical literature which addresses the beha-
vior of the solution of (1) as h—0. We mention here for example [3], [8],
{9] and survey [20].

One of the main applications of differential equations of the type (1) is
in the field of composite materials. Here the aim is to replace the composite
by homogeneous materials with the bulk material properties. For various
aspects we refer to [1], [2], [11], [12], [18]. A brief history is given in
[2]. The accuracy of such replacement depends, of course, on the goals of the
analysis. Hence many approaches are used in applications. The most obvious
approach, namely to use asymptotic analysis for h—0, 1is not always applic-
able because h 1is given and cannot be changed and because of particular aims
of the analysis. In a similar vein, when numerically solving the problem (1),
one faces essential difficulties of how to represent the microstructure of the
composite materials. This difficulty falls into the class of solution of

elliptic equations with rough coefficients. For various aspects of this

problem, we refer to (6], [7].




As was said above, various approaches can be and are used for solving
(1), approaches which often give very different results, see e.g. [10]. In
addition some of these approaches, although in principle well described, are
leading to large technical difficulties because a lot of symbol manipulaticn
is needed. The use of symbolic manipulation on computers does not simplify
these difficulties too much.

This paper presents and thoroughly analyzes an approach which is directed
to overcome the various major difficulties mentioned above:

a) It allows the design of an entire class of "homogenization" formula-
tions and judge the accuracy and reliability of any homogenization approach.
It also allows the specification of the class of problems (e.g. loads) for
which a homogenization approach is applicable. In addition, it leads to a
hierarchal construction of the homogenization formulations.

b) The implementation is completely numerical, and allows adaptive
modeling (selection of the equations). |

We will address here only the problem with Q = rR" although very impor-
tant features of the solution occur near the boundary when Q is a bounded
domain. These problems have a special character and will not be addressed
here. Some comments will be made in section 5.

We will assume that
i) Q=g"

ii) ao(x) 279, >0

111) £ € Ly(R")
and that the problem is elliptic and self-adjoint.

The restriction of our analysis to a single differential equation is of a
technical character only, as the ideas are also applicable to a system of

equations, which would arise in elasticity problems, for example. The main

2
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idea of the approach, under the assumptions stated above, is based on the

result that the solution uh of (1) can be written in the form

1

(2m)™2

Wwx) = I f‘(t)¢(§.h,t)eit.xdt
Rn

in which f 1s the Fourier transform of f and ¢(y,h,t) is a function,
which is 2n-periodic in y and analytic in h and t, and which solves the

differential equation

n .

(3) —eihey Y ég_[apq(y)gf-,-w(y)e‘ht’y)] + 1%, ()6(y) = K2
p, q=1 p p

on {y e R" : Iypl < w}. Other representations of uh that are related to

(2), but developed in a different context, can be found in [8] and [16].

By taking various expansions of ¢ with respect to h and t, we can
express approximately the solution uh in terms of solutions of auxiliary
partial differential equations with constant coefficients, or even pseudodif-
ferential equation, or alternatively, we can design a system of "ansatz" func-
tions to be used in a finite element model. Considering the error estimates
associated with the expansions of ¢ allows us to design an adaptive method
of selecting a "model" that would yield an approximate solution, whose accu-
racy meeds a prescribed tolerance. These ideas are more fully discussed in
[6], where we introduced a method to systematically derive numerical, computer
oriented methods for an approximation of uh.

In this paper, we concentrate our attention on the representation (2),
whereas we will make a thorough analysis of ¢(y,h,t) in [15]. Consequently,
the properties of ¢ that are used in this paper will be stated without
proof. The integral in (2) is defined as a Bochner integral of

Hiv(Rn)-valued function (Hiv(Rn) is defined in' the next section). As a




simple application of (2), we will given an alternate proof, in section 5, of
the classical homogenization result (the limit of uh as h—0).
This paper and [15] are based on the first author’s Ph.D. thesis [14], in

which additional details and references can be found.

2. Notation and Statement of the Problem.

For j=0,1, and for any v € R, define the weighted Sobolev space

Hg(Rn) to be the completion of C;(Rn) (the complex-valued C®-functions

that have compact support on Rn), with respect to "."J v’ where
HUH§ v - [ lDau(x)|2e2v|XIdx.
N PTES
(For x e R%, x| = |x1|+... +lxni.) We will use HJ(Rn) and Hon to

denote the standard Sobolev space and norm on R" (i.e., when v = 0). Next,

we introduce the Sobolev spaces of periodic functions for which
— n . -
S=({y= (yl,....yn) € R : kal <t for k=1,...,n}

is the fundamental periocd. For J = 0,1, we denote the standard Sobolev norm

on S by Iy g

to the norm H-HJ s’ of the complex-valued C®-functions on R™ that are

and we define ngr(S) to be the completion, with respect

2n-periodic in each coordinate variable.

Let apq {p,ga=1,...,n) and a, be real-valued, 2n-periodic,

Lw-functlons defined on Rn. Furthermore, assume aqp = apq and assume that

there exist positive constants 70 and 71 such that

¢




2, (x) 2 L and

(4)

2 a_ (x)¢ E 2 7 Z lC I for all ¢_ e C,
g=1 P4 P T ULy P

almost everywhere on R®. For each h > 0, define

_ x u , ,4v X
¥(h)[u,v] = J :E: pq h ax )5§;(x)-+a0(H)u(x)vix5}dx.
R

An immediate consequence of the conditions imposed on the coefficients a
and apq is that there exists a constant C, independent of h > 0, such
that

{IW(h)[u,vll < Cllull,livl, and
(5)

1¥(0) Lv,v11 2 min{y,, 7, HvI2

for all u and v in Hl(Rn). Then, according to the Lax-Milgram theorem,
for each h >0 and each f € L2, there exists a unique function uh €

HY(R") that satisfies

(8) W(h)[uh,v] = I f(x)v(x)dx for all v € Hl(Rn),
n
R
because
(7) vp—aj f(x)v(x)dx
R™

is a bounded linear functional on Hl(Rn).
Next, for each he C and t e Cn. define the sequilinear form
1 1
o(h,t) : Hper(s)prer(s)—ec by

®Ch, t) (¢, v] EJ Z (y)—-(¢(y) mt.y)%—(v—(—fy e'“‘t‘y)+h2a0(y)¢(y)v(y)}dy

p




Lemma 1. A neighborhood G c Cn+1, of Rn+1 can be found such that for each

(h,t) € G, there exists a unique function ¢(+,h,t) € H;eP(S) that satisfies

o(h,t)(¢(+,h,t),v] = hzj v(y)dy for all v e H;er(S).
S

Furthermore, the mapping (h,t) € G +— ¢(+,h,t) € H;er(s) is holomorphic, by

which we mean that about each point in G, the function (h,t)+—¢(-,h,t)

can be expanded in a power series, convergent in H1 (S} and in which each

per
coefficient is an element in H;er(S).

For the most part, the proofs of statements concerning ¢(+,h,t) are
omitted in this paper since we give a fairly complete analysis of ¢(-,h,t)
in [15].

In section 4, we show that uh admits the representation

(8) uP(x) = J f(t)¢(;‘—l,h,t)eit'xdt,
R

in which f(t) = f(x)e-it.xdx and in which the integral is a

7 |
(2m™?2 Jg°
Bochner integral of Hiv(mn)-valued functions. Our proof of (8) has as its

first step the claim that for each h >0 and t € Rn,

(9) x»—>¢(§,h.t)e“"‘

it°x' However, (9) is not an element of Hl(Rn),

solves (6) when f(x) = e
and for this choice of f, (7) is not a bounded linear functional on Hl(Rn).
Consequently, we consider ¥(h} as a sesquilinear form on Hiv(Rn)xﬂi(Rn)

for (sufficiently small) positive numbers v.

The main tool for analyzing ¥(h) is

Theorem 2. Let H1 and H2 be two complex Hilbert spaces with respective




norms "'“k and associated inner products (¢,¢), for k =1,2. Let B[-,*]

k

be a sesquilinear form defined on Hle for which there exist positive con-

1
stants M and 7 such that

a) |IBlu,v]l < Muuﬂlﬂvuz for all ue H, and v e Hz,

1

b) inf sup |B{u,v]| 2y > 0, and

ueH1 veH2

Hufly=1 Jull =1

c) sup IBlfu,vl] > 0 for each v € Hz, v # 0.
ueH1

»

If f e HZ’ the space of bounded conjugate-linear functionals on Hz, then

there exists a unique U, € Hl such that

d) B[uo,v] = f(v) for all v e H and

21
N, < lllfll
0"1 ~ 7 .

H

A proof of theorem 2 in the case of real Hilbert spaces can be found in

e) lu

[4] (as Theorem 5.2.1). The method of proof in the complex case is essen-
tially unchanged and thus will be omitted.

We now prove

Lemma 3. There exist positive constants vO,C, and 7y such that for all
vV e (O,DO) and all h > O,
D 1)L, vIT < Cluly vy

i) inf sup [¥(h){u,v]|l 2 ¥y > 0, and
Ilulll'_u=1 Ilvlll'u=1

i11)  sup  [¥(h)lu,v]l >0 for all ve H(®) and v = 0.
ueH. ()

The constants uo,C, and 7y are independent of h > 0; however, ¥ depends

on v..
0

Proof. Statement (i) follows because ¥(h) has Lm—coefficients. To prove

=2v|x]| n

statement (ii), define (Tu)(x) = u(x)e for ue HED(R ). Then for




v > 0,

n
(10) HTqu " J [:E:l———(x)-Zv sgn(xJ)u(x)l +Iu(x)|2]e_2”'x'dx

2 2
< 2(1+4nw )Hu"l,_v.

Now,

_ x du a(Tu) X
(11) ¥(h)(u,Tu] = :E: pq h ax )-52;—(x)-*ao(ﬁ)u(x)vix)}dx

_ &) du du b -2v x|

- Z o V5 (038 (x) + 2 (X)uG) T }e dx

J - p
T
= Z 24 (x)s n(x yulx) 2leldx
®pq h 6 &
R y =1

= Wl(h)[u]-ZUWZ(h)[u].

A simple consequence of (4) is Wl(h)[u] 2 min{yo,yl}uun? " We also have

Iwz(h)[ull < cuuu? - for some constant ¢, independent of h. Combining

these two inequalities with (10) and (11) yields

min{yo,yl} - 2¢cv
- il
|¥(h){u, Tull 2 (min{y,,7,} - 2cv)ull} 2 uuul,_vHTUHl'v

, =
V2(1+4nv2)

Consequently, there exist positive constants UO and vy, which are indepen-

dent of h > 0, for which ¥(h)[u,Tu] 2 7||ul|1 _vllTu"1 v for all v € (O,vo).

This proves (1ii).

Statement (iii) is proven in a similar manner. (s]

Throughout the remainder of thls paper, we implicitly assume v e (O,vo).

let f e LZ(IRn); then




|J £x)VxIdx! S Iflglvl, | for all v e Hi(Rn).
n ]
R

Lemma 3, in conjunction with Theorem 2, now yields

Theorem 4. For each h >0 and f e Lz(Rn) there exists a unique function

WP e H}v(Rn) for which

(12) W(h)[uh.v] = J f(x)v(x)dx for all v e Hi(Rn).
n
R
Furthermore "uhu < leH
’ 1,~v Y4 0’

There is no ambiguity in denoting the unique solutions of (6) and (12) by

uh because Hi(Rn) < Hl(Rn) c Hiv(Rn) implies they are the same function.

However, (12) can be solved when f belongs to a broader class of functions

than the class of L_-functions; namely, when f belongs to the dual space of

2
Hi(Rn). One such function is defined by f(x) = eit'x.

3. Preliminaries.
It is easy to prove
Theorem 5. There exists a constant CO independent of t, such that

itxy
Iz Yy g S CoUHItIA g

for al’ x € H'(S) and for all t e R®, where [t[% =t

2, a2
For each h > 0 and each w € Zn, define
S(h,w) = {x € R" : (0)=1)mh < x; < (wy+1)mh, §=1,...,n}.
Note that S(1,(0,...,0)) =S is the fundamental domain for the periodic
g




spaces.

Lemma 6. For each h > 0 and v > 0, there exists a constant Cl(h,v) that

n

remains bounded as h—0, such that for all t e R, and for any x €
ngP(S).

0 e Mg, < ¢ (g
and for any x € H;er(S)’

i1) ux(g)eit'xul'_v < (1+h-1)C1(h,v)eriht.yn1,8.
Proof

n
1Dt Z s ) [ D 1a2 et 2 n 12 e ¥ ax,
wel” 's(h,2w) =1 P

where 2w = (2w1,...,2wn). Making the substitution g - y+2nw in the

integral over S(h,2w) and using the periodicity of x ylields a constant

¢, independent of h, such that

n
et E =y {J [’“ZIég_(x(y)eiht’y)eiz"h“”tlz+ 12(y)12)
wez" Vs p=1 P

.e-th|y+2nwlhndy}

s Gen )| ) ROl e thtyy2
. " '

It is not difficult to prove that there is a constant ¢ that is independent

of h, such that

h" :E: e-4nvh|w| < chn(1+f e_PKVhIX|dx).
weln R

Upon setting C,(h,v) = V[Ec(hn+(2nv)—n). (i1) follows.

10




A similar argument in which the contribution from the first order deriva-

tives is ignored, produces (i). o

Lemma 7. For all h >0 and t e Rn. we have
n/2

(2n)
LA L

and

. ihtey
l¢(s.h,t)e "1,s S Cz(h)

for some positive number Cz(h).

Proof. It follows from (4) and Lemma 1 that

n
i L]
71J D lge=taty.n, 03¢ V) 12y s g b0 0012
Sp=t P
S 8(h, )[4(+,h,t), $(+,h,t)]

n/2 2

s (2n)"" "h H¢(°.h.t)H0 s’

(21t)n/2

The lemma now follows with Cz(h) =

min{70,71h-2}

4. The representation of uh.

We begin with

Theorem 8. For each h >0 and t e Rn,

itex n

1) xro¢(,hthe is in Hiv(m ), and

11) W(h)[¢(§.h.t)e1t'x.v] = I neit.xvfxidx for all v e Hi(Rn).
R

Furthermore,

11




1

itex

bl _, $ —

1,-v n/2
v

111) Jo(X,h,t)e

Proof. Statement (i) follows from Lemmas 6 and 7, which imply

it-x“
1,-v

is a consequence of Theorem 2, Lemma 3, and the fact IJ neit.xvixidxl <
R

I¢(Z,h, t)e < (1+h_1)C1(h,v)C2(h). Assuming that (ii) is true, (iii)

—E;EHVHI . The proof of (ii) is based upon determining the relationship
v ;]

between ¥(h) and &(h,t), and then using Lemma 1.
For each h > 0, there exists a locally finite, Cm-partition of unity
(cb(-,h) : weZ) subordinated to {S(h,w) : w € Z'} such that
r ncw(nh)v converges to v in Hi(Rn) whenever v € Hi(Rn). The basic

wel
do

requirement of the partition of unity is that Iab(x,h)l and |5§9(x,h)l for

p=1,...,n are uniformly bounded for x € R" and w € Z". Then vw(-.h) =

cb(o,h)v ahs compact support in S(h,w), and for any x € H;er(s).

mh)lxcg)e“"‘,vl

X, itex
:E: W(h)[x(i)e ,vw(x,h)]
weln

n —_——
av
E : 2: X, @ X, itex w
I [ apq(H)gx—(x(H)e )éx—(x,h)
S(h,w) q P

weln P, q=1

A

X X, itex
+ao(ﬁ)x(ﬁ)e vwfx,h) dx

because ¥(h) 1is a continuous sesquilinear form on HEV(Rn)xHi(Rn), accord-
ing to Lemma 3 (i1). In an effort to deform the region of integration S(h,w)
into S =5S(1,(0,...,0)) 1in each integral, make the substitution g = y+nw
for x € S(h,w), in which ® 1is the n-tuple of even integers, that is,

derived from w according to

12




Using the periodicity of a5 {apq : pbq=1,...,n}, and x, each integral

in (13) becomes

(14) [ {'22:pJW—4ﬂw1M(wWUa(mwm)m
S(1,w-@) p,q=1 Yq ' P

iht« (y+no

+ay(y)alyle vw(h(y+uﬁ).h)}hndy.

Next, for each w € Zn, define

(15) vﬁ(y.h.t) = vw(h(y+na),h)e’1ht'(V*"“’

for y € S(1,w-@) and extend vg(-,h,t) to all of R™ by 2n-periodicity.
Since the support of yk—evw(h(y+u5).h) is contained in S(1,w-w), it
follows that vg('.h,t) € H;er(S). Using (15) to substitute for

vw(h(y+n5),h) in (14) yilelds

J {-2 Z aqy (x(y)e”‘t y)i(v (y.h, t)e 1Bt
S(1, w-w) p, q=1 Yq

+ca0(y)x(y)v2(y,h.t)}hndy.

Now, the domain of integration S(1,w-®) can be replaced with S(1,(0,...,0))

= S, and consequently

(16) v (Delt X v1 = ZE: b 26(h, ) (2, v2(+ b, t) ]
wel

for all v e Hi(Rn).

13




Noting Lemma 1, it is now a simple matter to prove (ii):

¥(h) (o5 h, t)elt % v h® 26 (h, t)(¢(+, h,t),vC(+,h, t)]
W

weln
= :E: h" J vg(y.h.t)dy
we™ ’s
- J eit-xv(x)dx
R™
for all v e Hl(Rn), since v0(°,h,t) € Hl (s). o
v w per
Lemma 8. For each h >0, t € Rnk—9¢(§,h,t)eit.x € Hiv(Rn) is a continuous

mapping.

itx n

Proof. The continuity of tr—e € HED(R ) follows in a straightforward
manner.

Upon setting t =0 and x = ¢(*,h,t) -¢(+,h,T) in Lemma 6

X X
11m"¢(H,h,t)-¢(H.h,r)ﬂl’_v

tot
< (1+h71)C, (h,»)1imlg(+, b, ) - ¢(+, b, T
1,8
tot
=0
follows from Lemma 1. (w]

For each f € LZ(Rn), the Fourier transform of f is defined by

n/2

Fre) = —1L Jf(x)e-it.xdx.
(2r) R™

The following notation will be used with the function f only (as it appears

in (12)). For any f e Lz(Rn) and N >0, define f e Lz(Rn) as the

inverse Fourier transform of ?l(t-HtHSN)’ i.e.

14




1
) = — 2 I

#trelt gt and B (t) = {Z(t). It s N
(2n) ,

t]l > N.

Parseval’s inequality implies

limﬂf*-lelo = limllf-lelo = 0.
N"U N-’Q

1

n
-v(R ) by

Next, for each N > 0, define uh(~;N) e H

1

h =
Lo+ o |
NtiisN

f*(tw(g,h,t)e“‘*dt

_ 1 2 X itex
(2n) PR

in which the integral is to be interpreted as a Bochner integral of Hiv(Rn)-
valued function (cf. [17])). In order to show that the integral has such a

meaning, we need to show that the integrand is strongly measurable and that

it~x"
1,-»

This integrablility condition is satisfies as a result of (ii1i) of Theorem 8

tk—é"?(t)¢(%,h,t)e is Lebesgue integrable over ({t : |t|| < N}.

and because § 1is an Ll—function on {t : |t] s N}. By strong measurability
of the integrand, we mean there exists a sequence of simple functions

™)

tr——awk(-.t) € H_l.v(R such that

- X ftex =
(17) ll(i:llf(t)t#(i.h,t)e ~Wk(X,t)"1,_v = 0.

It 1s easy to construct such a sequence (and we do so in the proof of Theorem
10 below) using Lemma 9 and the measurability of f. Furthermore, if the

sequence of simple functions satisfies

(18) lim I ﬂ?(t)¢(§,h.t)elt'x-wk(x.t)Hl =0
ke Jyeysn '

15




then

J %(t)¢(;—§,h,t)eit"‘dt = lim J w (e, t)dt in va(mn),
fitl<N

k-
Iitlsn
in which the integral of a simple function is defined in the standard manner.

Theorem 10. For each N > O,

w(h)[uh(~;N),v] = I fN(x)VT§76x for all v e Hi(Rn).
R™
Proof. The essence of this proof is that a sequence of simple functions
satisfying (17) and (18) can be chosen so that each value of each simple func-
tion is of the form cdt(i,h,*t)ei":.x for some T € {t : |[t|| £ N} and for some
complex number c. With this being the case, Theorem 8 (ii) can be used to
evaluate ¥(h)[{u,v] whenever u 1is the integral of one of these simple
functions.

To begin, note that Hi(Rn) c Ll(Rn). Consequently, Vv is continuous

(cf. [15]) when v € Hi(Rn), and it follows from Theorem 8 that

V) [(E, b, 1e T, v1 = (2m)™ 2 ()
is well defined for each T € R".
Set 0= {t e R": it s N}. Now select a sequence of simple functions
S ° —C and a sequence of collections {Qk,J : J = 0,...,Mk} of measur-
able subsets of Q for k = 1,2,... and for which the following is true.
For each k:
» e Jl:}g“k.y B, g " g =@ for J= &
b} for j = 1....,Mk, if t and v are in Qk,J' then
105 h, et X s X n el ¥ < 27K and 19(6) - S0 <
h h 1,-v
2%, ang
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k

- < |5
t € Qk,O' sk—afN pointwise a.e. on Q, and Isk(t)l < IfN(t)l

c) s is constant on nk j for j = 0""’Mk’ with sk(t) = Q0 for

a.e. on f.

Next, for each k, pick a tk’J € nk’J for each J = 1,...,Mk, and define
o, t e Qk,o’
Mot = ¢(h.h ™ J)el” o J'x, teq o
and
rk(t) = {?’ k. te nk,O
vitT’Y), te Qk,J'

A consequence of the preceding construction and of Theorem 8 (iii) is

itex

A X
||fN(t)¢(H.h,t)e -sk(t)wk(x.t)lll’_v

< If‘N(t) s (t)l 5+ if (t)127%

1 -kl 4
< Lvn/zwa ]If‘N(t)l.

It follows from the first inequality that

)3 X itex _ . .
llmdi(t)¢(—,h.t)e sk(t)wk( ’t)ul,—v =0 a.e.

k-
Furthermore, the Lebesgue dominated convergence theorem and the second
inequality imply

2 X itex _
lim J HfN(t)¢(—.h,t)e 'Sk(t)wk("t)nl,—vdt = 0.
ko 0

Consequently, uh(-,N) 11m(2u) n/2j Sy (t)w (-,t)dt in H1 (R™).
HE T I

Finally, the continuity of u+—W¥(h)[u,v] (Lemma 3); the definitions of

17




Sk'wk’ and Pk; and Parseval’'s equality implies

() (PN, v = nm(zu)‘“/zU s, (£)w (+,t)dt, v
Ht(<N

k-

ii: J s, (t)r, (t)dt
Iti=N

fN(t)G(t)dt
“ItlsN

= fN(x)vixidx
aRn

for all v e Hi(Rn), because ?N(t) =0 for |tj] > N.

It is now a simple matter to prove the main result of this paper.

Theorem 11. Suppose h >0 and f € Lz(Rn). let u' e Hiv(Rn) be the

solution of (12). Then

1

n
L&Y

N-e

(19) WBx) = lim(2u)_n/2I ?(t)¢(§,h,t)eit°xdt in H
It]<N

where, for each N, the integral is defined as a Bochner integral of

Hiv(Rn)-valued functions.

Proof. A consequence of Theorem 10 is that

(20) w(h) [u - WP (5 N), v) =J (£(30)=£) (x))¥TxVdx
an

for all v e Hi(R), from which the inequality

(21) - e

1
_y S FIE=gyl,

is easlily derived (cv. Theorem 2 and Lemma 3). Then (18) follows.
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.

Actually, (19) converges in Hl(Rn) even though each integral is defined

only as a function in Hiv(Rn).

The reasoning that allows us to identify the
unique solutions of (6) and (12) also yields uh(°;N) € Hl(Rn) and the fact
that (20) is valid for all v € Hl(Rn). Now, the Lax-Milgram theorem and (5)

imply

h_ h 1 '
lu*-u( ,N)||1 < W"f fN"O'

5. Homogenization.

In this section we derive first the classical result of homogenization
which states that uh converges as h tends to 0, to a function that is
the solution of a constant-coefficient partial differential equation. This is
an example of analyzing uh through (19) and an analysis of ¢(+,h,t).

According to Lemma 1, it 1s‘possib1e to expand ¢(-,h,t) 1in powers of

h, for each t € Rn. Consequently, we can write
(22) ¢(+,h,t) = ¢0(~.t)-*¢1('.t)h+...
The functions {¢j("t) : J=0,1,...} can be determined by expanding (3) in

povwers of h and substituting (22). Here, we are interested in only the

constant term, and solving for it yields

1

¢0('.t) = go(t) = —
A t t +A
PR

where Ao and {qu : p,q= 1,...;n} are derived from the periodic coeffi-
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cients ao and {apq : p,g=1,...,n} and certain auxiliary functions.

Complete details are given in [13], where proofs of the properties of

¢(*,h,t) that are sted in the following lemma can also be found.

Lemma 12. There exist positive constants 6 and GO’ and continuous func-

1

tions g : R"—>(0,m) and G, : {(h,t) € R™ " : 0 < 6h(1+[t]) < 1}— (0, w)

1

such that
G
and

1) g (t) s ,

0 2

1+t

11) §¢(+,h,t) - g (t)], o S G,(h,t)h for each h20 and t e R" that
satisfy oh(1+|t|) < 1.

A consequence of (i) is that we can define functions U, and uo(-;N),

for N> 0, in H2(RY) by

uy(x) = (2n)-n/2J f(t)go(t)eit‘xdt
Rn

(23) Uy (x;N) = (2«)‘“’2I ?(t)gott)eit'xdt
Itii<N

whenever f € LZ(Rn) (cf. [11]). Note that uo(-;N) = u, with £ = fN. We

have GO = fgo and (uo(-;N))A = ?NSO’ and then Parseval’'s equality implies

(24) "uo-uo(x;N)HO < Goﬂf-fNHO.

The integrals that define Yy and uo(-;N) are to be interpreted as Lebesgue
integrals of numerical-valued functions. However, we want to interpret
u0(°;N) as an integral of Hiv(Rn)-valued functions. In the appendix, we
show that the integral in (23) can be interpreted in both ways, in an
unambiguous and consistent manner. Furthermore, note that Uy is the

solution of the constant coefficient differential equation
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n 2

a3 uo
(25) 'Z:%qa?r“”*w&“=f“*
P, q=1 P q

We can now prove the classical result in homogenization.

Theorem 13. Let f e L (R"). Let u" e H. (R" be the solution of (12) for
1

h>0, and let ujeH (R") c H (R") be the solution of (25). The
lim"uh-

h-0

u0“0.-v =0.

Proof. For each N > O, we have

h h_h L VR
(26) flu -uono'_v S flu -u (-;N)uo'_u-+ﬂu («:N) uo( ,N)HO'_U

*"Uo(°;N)-u0“0'_v-

Let € > 0 be given. It follows from (21) and (24) that we can choose an
N > 0 that makes each of the first and third terms on the right-hand side of
(26) smaller than €, wuniformly in h. Next, a consequence of Lemmas 6 and

1
12 1s that there exists ho € (O’ETTTﬁT) such that for all h € FO.hO),

hiw - .- -n/2 - X - itex
[u'(+;N) uo( .N)HO'_U s (2n) I lf(t)lﬂ(¢(h.h.t) go(t))e "0,-vdt
fitlisN
< (2«)'“’2c1(n.u)nj I?(t)lcl(h.t)dt
tlisN
< g. o]

Above we have used expansion (22) of the function &(-,h,t). Function
®(+,h,t) 1is the solution of the elliptic problem (3) with h and t being
parameters. We can find &(:,h,t) numerically e.g. by the finite element
method for various h and t and then make various expansions or approxima-

tions by numerical approaches. The a posteriori error analysis will lead also
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to an assessment of the accuracy of the used homogenization.
We can use various approximations of ¢&(+,h,t) to derive the homogeniza-
tion approach. Let us mention a few. For more, see [5].

a) For given a we can approximate &(+,h,t) so that

®(+,h, t) = Z¢k(')wk(tL

where wk(t) are rational functions in t. Every wk(t) then is the symbol

of the homogenized equation

LI(-)u = LZ(')u.

b) We can also use the above approximation of ¢&(+,h,t) as an "ansatz"
for the solution and derive equations for wk(t) via finite element method
and energy minimizatlon principle. This approach is essentially equivalent to
the derivation of special elements for "rough" problems.

c¢) Using other approximations we can obtain pseudodifferential
equations.

d) Any homogenization approach can and has to be understood as an
approximation of ®(+,h,t). Hence it is possible to assess the accuracy of a
homogenization approach by comparing it with &(+,h,t).

By the above mentioned approach a system of second or higher order ellip-
tic equations can be derived. This system will usually be of singularly per-
turbed type and the solution will show boundary larger when Q 1is bounded.

We can use various "ansatzes" of various types in different areas of the
domain, especially in the boundary reglon. By this way we can also obtain

reliable solutions in the neighborhood of the boundary.
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6. Appendix.

Define w(x,t) = (w*n)n/zfa‘(t)go(t)eit.x where f € LZ(Rn) and g, Iis

defined in Lemma 13. According to (22), wu.(+;N) e HZ(Rn) is defined by

0]

uo(x;N) = J wix, t)dt
It sN

as an integral of numerical-valued functions. Since

t— w(-,t) 1is strongly measurable in Hiv(Rn). and

puCe, )0, _at s (2m™%g u‘“/zj' 1F(t)1dt < o,
’ |

0 [t)<N

hHHN
it follows that

W= J w(e, t)dt
ftlisN

can be defined as an integral of Hiv(Rn)-valued functions. We want to prove

ny.

Lemma 14. uo(';N) = W as a function in HEV(R

-v x| -v[x]|

and xr—W(x)e

Proof. It suffices to show that xp-éuo(x;N)e
generate the same generalized function. It follows from (27) that a sequence

tk—éwk(',t) € Hiv(Rn) of simple functions can be chosen so that

lim"wk(.’t)'-W(°’t)"1,-v =0 a.e.

k-w
ll;:[ I (-, £) = wle, 800, _dt = o,
ItlI<N
and
I, Coot) S Siwle, )] a.e
Uy L, S vty L, e
Then by definition, W =1lim [  w(,t)at in ! (R™).
koo L] <N
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Let y e C;(RnJ. Then Fubini’s theorem, the Lebesgue dominated conver-

gence theorem, and the definitions of Wi and W imply

J uo(x;N)e-lelw(xjdx = J w(x,t)e-VIXIwixidxdt
n
R

Nt)<N L“

lim J
ko

J w(x)e—lelwixidx.
RD

J wk(x,t)e-lelwfxidx
tsN YR
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